Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Sci ; 154(2): 61-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246729

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is the most common childhood-onset psychiatric disorder. We investigated the effects of systemic administration of monoamine reuptake inhibitors on long-term potentiation (LTP) formation and monoamine release in the medial prefrontal cortex (mPFC) of the stroke-prone spontaneously hypertensive rat (SHRSP)/Ezo, an animal model of ADHD, and its genetic control, Wistar Kyoto (WKY)/Ezo, to elucidate the functional changes in the mPFC monoamine neural system. Methylphenidate (dopamine (DA) and noradrenaline (NA) reuptake inhibitor) and desipramine (NA reuptake inhibitor) improved LTP formation defects in the mPFC of SHRSP/Ezo, suggesting that NA or both DA and NA are required for improvement of impaired LTP. Methylphenidate increased mPFC DA in both WKY/Ezo and SHRSP/Ezo, but the increase was greater in the former. GBR-12909 (DA reuptake inhibitor) increased mPFC DA in WKY/Ezo but had no effect in SHRSP/Ezo. This may be because DA transporter in SHRSP/Ezo is functionally impaired and contributes less to DA reuptake, so its inhibition did not increase DA level. Meanwhile, basal DA levels in the mPFC of SHRSP/Ezo were paradoxically decreased. These results suggest that functional changes in the DA and NA neural system in the frontal lobe are involved in the pathology of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Metilfenidato , Humanos , Ratos , Animais , Criança , Ratos Endogâmicos WKY , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Ratos Endogâmicos SHR , Aminas , Metilfenidato/farmacologia , Modelos Animais , Dopamina
2.
MethodsX ; 9: 101752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769612

RESUMO

D-serine has a role as an endogenous allosteric agonist of N-methyl-D-aspartate (NMDA) receptor in the mammalian brain. In this study, we present a detailed description of our method that measures D-/L-serine by using conventional high performance liquid chromatography (HPLC). • We reacted D-serine and L-serine with ortho-phthalaldehyde (OPA) and N-acetyl-L-cysteine (NAC) to form diastereomeric isoindole derivatives, then we separated and detected them by conventional reversed phase HPLC with electrochemical detector (ECD). • We present typical measurement data of rat brain homogenate as an example of a convenient, appropriate method for measuring brain concentrations of D-serine. • Since many peaks appear in biological samples, we confirmed that the peaks were derived from serine by treating the sample with D-amino oxidase and catalase to decompose D-serine. As a results, one peak disappeared, suggesting that it is derived from D-serine.

3.
Eur J Pharmacol ; 923: 174930, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364072

RESUMO

Attention-deficit/hyperactivity disorder (AD/HD) is a mild neurodevelopmental disorder with inattention, hyperactivity, and impulsivity as its core symptoms. We previously revealed that an AD/HD animal model, juvenile stroke-prone spontaneously hypertensive rats (SHRSP/Ezo) exhibited functional abnormalities in N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex. D-serine is an endogenous co-ligand that acts on the glycine-binding site of NMDA receptors, which is essential for the physiological activation of NMDA receptors. We herein performed neurochemical and pharmacological behavioral experiments to elucidate dysfunctions in D-serine metabolism (namely, biosynthesis and catabolism) associated to AD/HD. The serine enantiomers ratio (D-serine/D-serine + L-serine, DL ratio) in the medial prefrontal cortex (mPFC) and hippocampus (HIP) was lower in SHRSP/Ezo than in its genetic control. The level of D-amino acid oxidase (DAAO, D-serine degrading enzyme) was higher in the mPFC, and the level of serine racemase (SR, D-serine biosynthetic enzyme), was lower in the HIP in SHRSP/Ezo. Thus, changes in these enzymes may contribute to the lower DL ratio of SHRSP/Ezo. Moreover, a microinjection of a DAAO inhibitor into the mPFC in SHRSP/Ezo increased DL ratio and attenuated AD/HD-like behaviors, such as inattention and hyperactivity, in the Y-maze test. Injection into the HIP also increased the DL ratio, but had no effect on behaviors. These results suggest that AD/HD-like behaviors in SHRSP/Ezo are associated with an abnormal D-serine metabolism underlying NMDA receptor dysfunction in the mPFC. These results will contribute to elucidating the pathogenesis of AD/HD and the development of new treatment strategies for AD/HD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
4.
Neuropsychopharmacol Rep ; 38(2): 61-66, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30106260

RESUMO

AIM: We previously reported that stroke-prone spontaneously hypertensive rat/Ezo (SHRSP/Ezo) has high validity as an attention deficit/hyperactivity disorder (AD/HD) animal model, based on its behavioral phenotypes, such as inattention, hyperactivity, and impulsivity. Fronto-cortical dysfunction is implicated in the pathogenesis of AD/HD. In this study, we investigated prefrontal cortex (PFC) function in SHRSP/Ezo rats by electrophysiological methods and radioreceptor assay. METHODS: We recorded excitatory postsynaptic potential in layer V pyramidal neurons in the PFC by intracellular recording method to assess synaptic plasticity in the form of long-term potentiation (LTP). We also performed N-methyl-d-aspartate acid (NMDA) receptor binding assay in the PFC and hippocampus using radiolabeled NMDA receptor antagonist [3 H]MK-801. RESULTS: Theta-burst stimulation induced LTP in the PFC of genetic control, WKY/Ezo, whereas failed to induce LTP in that of SHRSP/Ezo. The Kd value of [3 H]MK-801 binding for NMDA receptors in the PFC of SHRSP/Ezo was higher than in the WKY/Ezo. Neither the Bmax nor Kd of [3 H]MK-801 binding in the SHRSP/Ezo hippocampus was significantly different to WKY/Ezo. CONCLUSION: These results suggest that the AD/HD animal model SHRSP/Ezo has NMDA receptor dysfunction in the PFC.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Hipertensão/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipertensão/complicações , Potenciação de Longa Duração , Masculino , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
5.
Nihon Yakurigaku Zasshi ; 152(1): 28-32, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29998949

RESUMO

Electrophysiological methods are commonly used in neuroscience and pharmacology to reveal the mechanisms of drug action. In vivo analysis of the mechanisms of drug action is a particularly important method in neuropharmacology. Here, we show the juxtacellular recording method to characterize the electrophysiological and neurochemical properties of neurons. Using juxtacellular recording, researchers can record the membrane potential from single neurons, and examine action potential parameters, such as the width and coefficient variance of inter-spike intervals. Additionally, recorded neurons can be labeled using neurobiotin, and neurochemical properties can be revealed by a combination of immunohistochemical staining and in situ hybridization. We introduce an experiment testing the effects of a phosphodiesterase 4 (PDE4) inhibitor on the fronto-striatal circuit using juxtacellular recording. The cerebral cortex-nucleus accumbens (NAcc)-external segment of globus pallidus (GPe)-subthalamic nucleus (STN)-substantia nigra pars reticulata (SNr) pathway is the neurobiological basis of many neuropsychiatric disorders. Several components of this pathway are particularly important for the regulation of motor action and cognitive function: 1) STN-SNr pathway (hyperdirect pathway), 2) NAcc-SNr pathway (direct pathway), and 3) GPe-STN-SNr pathway (indirect pathway). Researchers can record tri-phasic responses reflecting these pathways using electro-stimulation in cerebral cortex. A PDE4 inhibitor, roflumilast, affected the 2) direct pathway as well as the 3) indirect pathway, but not the 1) hyperdirect pathway. The current findings suggest that PDE4 inhibition could be considered as a possible treatment for cognitive deficits related to fronto-striatal disorders such as attention deficit/hyperactivity disorder, and Parkinson's disease.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Inibidores da Fosfodiesterase 4/farmacologia , Células Cultivadas , Eletrofisiologia/métodos , Humanos , Neurônios/efeitos dos fármacos , Doença de Parkinson
6.
J Pharmacol Sci ; 124(3): 394-407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599137

RESUMO

Gender differences in psychiatric disorders are considered to be associated with the serotonergic (5-HTergic) system; however the underlying mechanisms have not been clearly elucidated. In this study, possible involvement of the median raphe nucleus (MRN)-hippocampus 5-HTergic system in gender-specific emotional regulation was investigated, focusing on synaptic plasticity in rats. A behavioral study using a contextual fear conditioning (CFC) paradigm showed that the females exhibited low anxiety-like behavior. Extracellular 5-HT levels in the hippocampus were increased by CFC only in the males. Long-term potentiation (LTP) in the hippocampal CA1 field was suppressed after CFC in the males, which was mimicked by the synaptic response to MRN electrical stimulation. In the MRN, 5-HT immunoreactive cells significantly increased in the females compared with those in the males. Pretreatment with the 5-HT1A receptor agonists tandospirone (10 mg/kg, i.p.) and 8-OH DPAT (3 mg/kg, i.p.) significantly suppressed LTP induction in the males. Synaptic responses to CFC and 5-HT1A receptor interventions were not observed in the females. These results suggest that the metaplastic 5-HTergic mechanism via 5-HT1A receptors in the MRN-hippocampus pathway is a key component for gender-specific emotional regulation and may be a cause of psychiatric disorders associated with vulnerability or resistance to emotional stress.


Assuntos
Emoções Manifestas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Núcleos da Rafe/patologia , Receptores 5-HT1 de Serotonina/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Feminino , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Transtornos Mentais/etiologia , Transtornos Mentais/psicologia , Metaplasia/genética , Ratos , Ratos Wistar , Serotonina/metabolismo , Caracteres Sexuais , Estresse Psicológico/complicações
7.
J Anesth ; 28(3): 390-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24113864

RESUMO

PURPOSE: Ketamine, a noncompetitive N-methyl-D-aspartate receptor antagonist, has been used for the treatment of cancer pain as an analgesic adjuvant to opioids. However, ketamine is known to produce psychotomimetic side effects including cognitive impairments under a high-dose situation, presumably as the result of cortical dysfunction. Here, we investigated whether low-dose ketamine was useful as an analgesic adjuvant to morphine for pain control, focusing on frontocortical function. METHODS: To assess the analgesic effects of ketamine with or without morphine, we performed behavioral and histochemical experiments, using the hot plate test and c-Fos expression analysis in rats. The effect on cortical function was also determined by prepulse inhibition (PPI) of the acoustic startle and evoked potentials in the hippocampal CA1-medial prefrontal cortex (mPFC) synapses as measures of synaptic efficacy. RESULTS: Coadministration of ketamine as a subanalgesic dose significantly enhanced intraperitoneal morphine-induced antinociceptive response, which was measured as the increased reaction latency in the hot plate test. In addition, the noxious thermal stimulus-induced c-Fos expression in the ventrolateral periaqueductal gray matter was significantly suppressed by concomitant ketamine and morphine. In contrast, the subanalgesic dose of ketamine did not impair PPI and synaptic efficacy in the mPFC. CONCLUSION: The present results indicate that the morphine-induced analgesic effect is enhanced by a concomitant subanalgesic dose of ketamine without affecting cortical function. Our findings possibly support the clinical notion that low-dose ketamine as an analgesic adjuvant has therapeutic potential to reduce opioid dosage, thereby improving the quality of life in cancer pain patients.


Assuntos
Analgésicos/uso terapêutico , Córtex Cerebelar/efeitos dos fármacos , Ketamina/uso terapêutico , Morfina/uso terapêutico , Dor/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Córtex Cerebelar/fisiologia , Relação Dose-Resposta a Droga , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Masculino , Morfina/administração & dosagem , Manejo da Dor/métodos , Ratos , Ratos Wistar
8.
Biol Pharm Bull ; 36(9): 1392-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23995647

RESUMO

Traumatic events in early life are implicated in an increased risk of psychiatric diseases, such as depression and anxiety disorders. Serotonin is thought to play a central role in stress-induced psychiatric diseases. Serotonergic systems, including neural organization and receptor function, could dramatically change with each developmental stage. Here, we reviewed the persistent influence of early life stress on emotional regulation, focusing on the serotonergic system in rats. An aversive stimulus, foot shock (FS), during the early postnatal period (2-3 weeks after birth) produced behavioral, neuroanatomical and electrophysiological changes accompanied by serotonergic dysfunction, especially functional impairment of the serotonin (5-hydroxytryptamine; 5-HT)1A receptor in the cortico-limbic area. These findings suggest that normalization of the cortico-limbic serotonergic function has therapeutic potential for early stress-induced emotional disturbance.


Assuntos
Receptor 5-HT1A de Serotonina/fisiologia , Serotonina/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal , Emoções/fisiologia
9.
J Neurosci ; 32(41): 14415-26, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055511

RESUMO

The serotonergic (5-HTergic) system arising from the dorsal raphe nucleus (DRN) is implicated in various physiological and behavioral processes, including stress responses. The DRN is comprised of several subnuclei, serving specific functions with distinct afferent and efferent connections. Furthermore, subsets of 5-HTergic neurons are known to coexpress other transmitters, including GABA, glutamate, or neuropeptides, thereby generating further heterogeneity. However, despite the growing evidence for functional variations among DRN subnuclei, relatively little is known about how they map onto neurochemical diversity of 5-HTergic neurons. In the present study, we characterized functional properties of GAD67-expressing 5-HTergic neurons (5-HT/GAD67 neurons) in the rat DRN, and compared with those of neurons expressing 5-HTergic molecules (5-HT neurons) or GAD67 alone. While 5-HT/GAD67 neurons were absent in the dorsomedial (DRD) or ventromedial (DRV) parts of the DRN, they were selectively distributed in the lateral wing of the DRN (DRL), constituting 12% of the total DRL neurons. They expressed plasmalemmal GABA transporter 1, but lacked vesicular inhibitory amino acid transporter. By using whole-cell patch-clamp recording, we found that 5-HT/GAD67 neurons had lower input resistance and firing frequency than 5-HT neurons. As revealed by c-Fos immunohistochemistry, neurons in the DRL, particularly 5-HT/GAD67 neurons, showed higher responsiveness to exposure to an open field arena than those in the DRD and DRV. By contrast, exposure to contextual fear conditioning stress showed no such regional differences. These findings indicate that 5-HT/GAD67 neurons constitute a unique neuronal population with distinctive neurochemical and electrophysiological properties and high responsiveness to innocuous stressor.


Assuntos
Glutamato Descarboxilase/fisiologia , Neurônios/química , Neurônios/fisiologia , Núcleos da Rafe/química , Núcleos da Rafe/fisiologia , Serotonina/fisiologia , Animais , Eletroencefalografia , Glutamato Descarboxilase/química , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Serotonina/biossíntese , Serotonina/química
10.
J Pharmacol Sci ; 114(3): 341-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21099149

RESUMO

The medial prefrontal cortex (mPFC) has recently been shown to be an important brain region for emotional function as well as cognitive ability. In previous experiments, we studied the population spike amplitude (PSA) in the mPFC induced by stimulation of the CA1/subicular region as an index of synaptic efficacy in the hippocampal-mPFC pathway. In the present study, we investigated the relationship between the anxiolytic effect of diazepam and the changes of synaptic efficacy in this pathway. In contextual fear conditioning tests, diazepam (0.1 mg/kg) was not effective for fear-related freezing behavior. At a dose of 0.5 mg/kg, diazepam decreased freezing behavior 20 min after administration, with no discernible effect 30 min after administration. In electrophysiological experiments, 0.1 mg/kg diazepam had no effect on the PSA in the mPFC. In contrast, 0.5 mg/kg diazepam increased the PSA in the mPFC within 30 min of administration; however, this PSA increase was attenuated over the 30-min period. Based on these results, we propose that the diazepam-induced PSA increase in the mPFC is associated with its anxiolytic-like effect.


Assuntos
Ansiolíticos/farmacologia , Diazepam/farmacologia , Hipocampo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico , Estimulação Elétrica , Emoções , Medo , Hipocampo/fisiologia , Masculino , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
11.
Brain Res ; 1195: 50-5, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18201687

RESUMO

Synaptic plasticity expressed as long-term potentiation (LTP) in the hippocampal-medial prefrontal cortex (mPFC) pathway is considered to be involved in cognitive function and learning and memory processes, but its synaptic mechanism remains unknown. The present study characterized LTP in the mPFC using the atypical antipsychotic clozapine, with a focus on dopaminergic modulation. The magnitude of LTP was facilitated by pretreatment with clozapine (20 mg/kg, i.p.), but not by the typical antipsychotic haloperidol (1 mg/kg, i.p.). Clozapine-induced LTP augmentation was blocked by the dopamine D(1) receptor antagonist SCH-23390 (10 microg/rat, i.c.v.), but not by the D(2) receptor antagonist remoxipride (10 microg/rat, i.c.v.) or the 5-HT(1A) receptor antagonist WAY-100635 (20 microg/rat, i.c.v.). SCH-23390 (10 microg/rat, i.c.v.) by itself did not affect LTP induction. The D(1) receptor agonist SKF-38393 (10 microg/kg, i.c.v.) facilitated LTP, mimicking the clozapine-induced response. Furthermore, in vivo microdialysis showed that transient increases in mPFC dopamine levels induced by tetanic stimulation sustained facilitation following clozapine administration (20 mg/kg, i.p.). These results demonstrate the importance of the D(1) receptor as a mediator of clozapine-induced LTP augmentation through enhanced dopaminergic activity. Augmentation of synaptic plasticity in the hippocampal-mPFC pathway via D(1) receptors appears to be responsible for the therapeutic effects of clozapine.


Assuntos
Antipsicóticos/farmacologia , Clozapina/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Anestésicos Intravenosos/farmacologia , Animais , Conscientização/efeitos dos fármacos , Dopamina/metabolismo , Haloperidol/farmacologia , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Sinapses/efeitos dos fármacos , Uretana/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...